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In the study of some kind of generalized Vietoris-type topologies for the hyperspace
of all nonempty closed subsets of a topological space (X, t), namely the so called
A-hit-and-miss-topologies with A € CI/(X) (or A-topologies), which was initiated
by the second author in 1965, it is obvious, that the non-compactness of such a
hyperspace often depends on the non-compactness even in the lower-semifinite
topology (induced by the hit-sets” ), which is contained in all hypertopologies
of this type. Otherwise, compactness for these topologies is easily obtained from
the compactness of (X, t) by well-known theorems, if the “miss-sets” are induced
either by compact or closed subsets. To obtain a similar result for topologies with
“miss-sets” generated by subsets with a property which generalizes both, closedness
and compactness especially in the non-Hausdorff case, we use consequently a quite
set-theoretical lemma, stated at the beginning.

Let (X, 1) be a topological space. By :3(X), 30(X), 2%, CI(X) and
K (X) respectively we denote the power set, the power set without the empty
set ¥, the family of all closed subsets, the family of all nonempty closed
subsets and the set of all compact subsets of X. For B € (X) we define
B~ :={A € CI(X)|AN B # ¢} (hit-set)and B* := {A € CI(X)|ANB = @}
(miss-set). (This notation for a miss-set is a deviation from the otherwise used
(X\ B)™, butin [5], [6] the corresponding hit-and-miss hyperspace topologies
also were defined in this manner.) By 7, we denote the topology for C/(X),
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generated by the subbase of all G7, G € 7. Now consider ¥ # o € 1(X);
by 1, we denote the topology for C/(X) which is generated from the subbase
of all B, B € o and G~, G € t. Of course, for every possible « we have
7 C 14; for o = CI(X) we get the Vietoris topology and for « = K (X) we
get the Fell topology for C/(X). If « = A € CI(X), 7, is called A-topology
by Beer and Tamaki [2].

A-topologies are now studied by several authors (see [2], [3] and the
papers quoted in these papers). A-topologies were first considered in a paper
|6] of the second author. In this paper and in the preceding paper 5] separation
axioms, especially Hausdorffness and regularity, for general hit-and-miss
topologies and for A-topologies were studied. The aim of the present paper
is to look for a special class of hit-and-miss topologies t,, including A-
topologies, when (CI(X), t,) is compact. At first we will extend the notions
of the hit-and miss-sets in order to state some quite general lemmas.

By ®(X) and ®,(X) we denote the set of all filters and ultrafilters,
respectively, on a set X (a filter is not allowed to contain the empty set ¢); the
symbol ®(¢) (resp. Po(¢p)) means the set of all filters (resp. ultrafilters) which
contain a given filter ¢; x is the filter generated by a singleton {x},x € X.
The symbol ¢, denotes the convergence structure induced by a topology t,
i.e. g, = {(p,x) € P(X) x X|p 2 x N1}, s0q, is a relation between filters
and points of a set X.

DEFINITION 1. For a set X assume u € 3(X), M C X. Then we call
M= :={AcuaANM + @}
the M-hit-set w.r.t. 2 and
Mt ={Aeca|lANM=08(=a\ M= = (M=)

the M-miss-set w.r.t. 21.
Obviously we get the usual notions mentioned above with 2 = CI(X).

If X is a set, 7, 2 are subsets of 3(X), then we call 2« weak complemen-
tary w.r.t T, iff for every collection {G;|i € I} € t and every subset ¥ # R C
X\U G, there exists an element A of =2« with A C X\U G;and ANR # (.

iel iel
(Equivalently, one may write [ J{A| A € p3(X \ U G)Na} =X\ U G, for

iel iel

this.)
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Now, we can state a quite set-theoretical, not even surprising, but fairly
useful lemma:

LEMMA 2. Let X be a set, T, 1 C sp(X) and K C X. Then holds
UG 2k = | G2k
iel iel
for every collection G;,i € I,G; € t.
If 2 is weak complementary w.r.t. T, then for every collection G;,i €
1, G; € T the implication
UG 2k < G2k
iel iel

holds, too.

Proof.Let| JGi 2 K. Ae K= ANK £0=0#An| G =
iel iel
Jgel:ANG, #0=AecG," = Ae| ]G/
iel
Conversely, let 2 be weak complementary w.r.t. T and U G, "2 K™=
iel
Assume U G; 2 K. Then X \ U G; DK\ U G; # ¢ holds, so there is an
iel iel iel
Aea, ACX\|JGiwithAnK\| JG: # @. Thus A € K™=, implying
iel iel
A € U G, ™. This yields Jip € I : AN G;, # ¥ in contradiction to the
iel

construction of A. O

COROLLARY 3. Let X be a set, T, 4 C 3(X) and K C X. Then holds
(1 UGi2k < (JG2k~
iel iel
for every collection G;,i € I, G; € t if and only if « is weak complementary
W.rt. T.

Proof. We only have to show, that 2« is weak complementary w.r.t. 7, if
(1) holds. Assume, 2t is not weak complementary w.r.t. 7. Then there must be
a collection {G;|i € I} C t, such that

U:AlAeqs(X\UG,-)ﬂm} 2 x\|JG:.

iel iel
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Now, we chose

K := (X\UG,)\U{AlAeqs(X\UGi)ﬂm} £ §.

iel iel

Then no element of 2, which meets K, can be contained in X \ U G, ie.
iel
every element of K= meets U G;, too. So, it must meet a G, ioE e I and
iel
consequently it is contained inEU G, ™. But, by construction, the collection
{G;li € I} doesn’t cover K, so (ile; would fail. O
Obviously, if for every collection {G;|i € [} < 1 the complement
X\ U G; itself belongs to 2, or if all singletons {x}, x € X are elements

iel
of 2, then 2 is weak complementary w.r.t. T. So, if T is a topology on X,
CIl(X) and K (X) are weak complementary w.r.t. T.

COROLLARY 4. Let (X, T) be a topological space, K € X and Vi € I :
G, € t. Then holds

G2k < |G 2k

iel iel

DEFINITION 5. Let (X, t) be a topological space. A subset A C X is
called weak relative complete in X, iff

Vo € ®(A)Ng; ' (X): D(p) Ng ' (A) #7,

i.e. every filter ¢ on A, which converges in X, has a refinement, converging
in A.

PROPOSITION 6. Let (X, T) be a topological space and A C X. Then
holds:

(a) A isweak relative complete in X, iff ®o(A)Ng; ' (X) = ®o(A)Ng; ' (A),
i.e. every ultrafilter on A, which converges in X, converges in A, too.
(b) If A is closed in X, then A is weak relative complete in X.

(c) If A is compact, then A is weak relative complete in X .
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If (X, 1) is compact and A is weak relative complete in X, then A is
compact, too.

If (X, t) is Hausdorff, then every weak relative complete subset A € X
is closed in (X, 7).
A is compact iff A is weak relative complete and relative compact.

Weak relative completeness is transitive, i.e. for all A € B C X with
B weak relative complete in (X, 1) and A weak relative complete in
(B, 18), the subset A is weak relative complete in (X, 1), too.

Proof:

If A is weak relative complete in X, the assertion about the ultrafilters
on A follows immediately from the fact, that an ultrafilter has no proper
refinement. Conversely, if a filter ¢ on A is given, which converges in
X, then every refining ultrafilter 1» O ¢ converges in X, too. Now, by
@o(A)NG (X)) = ©o(A)Ng.'(A), ¢ converges in A and is a refinement
of ¢. So, A is weak relative complete in X.

If A isclosed in X, then every point of X, to which a filter on A may
converge, belongs to A.

If A is compact, then every ultrafilter on A converges in A and the weak
relative completeness of A in X follows from (a).

X compact = Do(X) N g, '(X) = DPo(X) = Po(A) N ¢, (X) =
®y(A) and by the weak relative compactness of A with (a) we get
Do(A) Ng; ' (A) = Po(A), i.e. Aiscompact.

If A is weak relative complete in (X, t) and there is a filter ¢ € ®(A),
converging to a point x € X. Then there must exist a refining filter
¥ € ®(¢) which converges to a point a € A. But this filter converges
to x, too, because of it’s subfilter ¢, so by Hausdorffness x = a € A
follows. So, A is closed in (X, 7).

A compact subset A is clearly relative compact, and it is weak relative
complete by (c). If A is relative compact', then every ultrafilter on A
converges in X and so it converges in A by (a) if A is in weak relative
complete in addition.

1

Note, that we call a subset A of a topological space (X, t) to be relative compact in X,

iff all ultrafilters on A converge in X. This doesn’t imply the compactness of the closure of A,
in distinction to another practices to use the notion “relative compact”. For more explanation
see [1], [7]
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(g): Follows immediately from (a), because an ultrafilter on A is an ultrafilter
on B, too. So, if it converges in X, it must converge in B and so in A,
too, because of the weak relative completeness, successively. O

Obviously, we can define the well-known hyper-topology 7; not only for
the space of the closed subsets, but for any subset 20 of 93(X): denote by
7o the topology for 21, which is generated by the subbase consisting of all
G~ =, G € 7. (This means, we require the images of the open sets of the base
space under the mapping = : 3(X) — (=) to be open in the hyperspace.) In
the same manner we can extend the definition of t, for any o C 3(X). (This
means, we require the images of the members of o under the ~=-mapping
to be closed in the constructed hyperspace. So, the study of hit-and-miss-
hyperspaces is essentially the study of the ~=-mapping.)

LEMMA 7. Let (X, T) be a topological space, o € 13(X) and a collection
20 C p(X) which is weak complementary w.r.t. T. If (X, T) is not compact,
then 2y := 2\ {0} is not compact in 1, and consequently not in t,, too.

Proof. If 21 is weak complementary w.r.t. T, then = is, too. So, lemma 3
is applicable.

Because X is not compact, there is an open cover (G;);c; of X, such
that no finite subfamily covers X. Applying Lemma 2 with K = X and
consequently K=o = =21, we find, that (Gi_”o)ie ; is an open cover of 2. For
any subfamily of (G, ™);c; which covers 2, the corresponding subfamily of
(Gi)ies covers X by lemma 2. So, there exists no finite subcover of =2t in
(G; ier.- O

Now, we can state the main result.

THEOREM 8. If (X, 1) is a topological space, then let ¢ < p(X)
consist of weakly relative complete subsets of X. Then holds for any « with
Cl(X) C 22 C p(X): (209, Tp) is compact < (X, T) is compact.

Proof: According to lemma 7 we only must show that (=i, t,) is compact,
if (X, t) is compact. So, assuming (X, ) to be compact, by proposition 6
every weakly relative complete subset of X is compact, too, and we have
o € K(X). Now we will use Alexander’s lemma: let U be a cover of =,
consisting of subbase elements K ,.+Q‘°, Gj_‘mo with K; compact and G; open.
A= X\ (U(GIG™0 € U}) is closed.
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By construction, A ¢ G0 forany G~=0 € U, so for A # {J there must
exist some K(;MO € U with A € K(;FQ'O, yielding that Ko C | J{G|G™=0 € U},

Ko compact = 3Gy, ...,G, € U with K, C UGk, but then {K(;MO} U
k=1
{G,™, ..., G, ™} is a cover of 2.
If A =0,then | J{G;|G, ™ € U} = X, so from the compactness of X the

existence of some G, ™, ..., G, € U with X = U G follows. By lemma
k=1

2 then |_J G;™ = 210 holds. 0

k=1

Remark: Obviously, weak relative compactness is not the “weakest”
condition, which one may require for the members of « in order to get
compactness for (21, 7,,) in this way. The only thing, we have to ensure,
is that all members of o are compact, if X is compact. But, weak relative
completeness ist a quite "weak” propertie as well, and it occurs in a natural
manner by regarding some generalizations of uniform structures. It seems to
be a sometimes useful common generalization of compactness, closedness
and, in a (generalized) uniform setting, completeness.

COROLLARY 9. Theorem 8 holds for each A-topology; especially it holds
for the Vietoris topology, where the theorem was proved by Michael [4]. It also
holds for the Fell topology tr = t,, where o := {K C X|0 # K compact
and closed } C CI(X).

COROLLARY 10. Theorem 8 holds for the Fell topology tr = t,, where
a:=K(X)and ¥ € K(X).
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