RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO Serie II, Tomo LI (2002), pp.

COMPACTNESS FOR A CLASS OF HIT-AND-MISS HYPERSPACES

RENÉ BARTSCH - HARRY POPPE (ROSTOCK)

In the study of some kind of generalized Vietoris-type topologies for the hyperspace of all nonempty closed subsets of a topological space (X,τ) , namely the so called Δ -hit-and-miss-topologies with $\Delta \subseteq Cl(X)$ (or Δ -topologies), which was initiated by the second author in 1965, it is obvious, that the non-compactness of such a hyperspace often depends on the non-compactness even in the lower-semifinite topology (induced by the "hit-sets"), which is contained in all hypertopologies of this type. Otherwise, compactness for these topologies is easily obtained from the compactness of (X,τ) by well-known theorems, if the "miss-sets" are induced either by compact or closed subsets. To obtain a similar result for topologies with "miss-sets" generated by subsets with a property which generalizes both, closedness and compactness especially in the non-Hausdorff case, we use consequently a quite set-theoretical lemma, stated at the beginning.

Let (X, τ) be a topological space. By $\mathfrak{P}(X)$, $\mathfrak{P}_0(X)$, 2^X , Cl(X) and K(X) respectively we denote the power set, the power set without the empty set \emptyset , the family of all closed subsets, the family of all nonempty closed subsets and the set of all compact subsets of X. For $B \in \mathfrak{P}(X)$ we define $B^- := \{A \in Cl(X) | A \cap B \neq \emptyset\}$ (hit-set) and $B^+ := \{A \in Cl(X) | A \cap B = \emptyset\}$ (miss-set). (This notation for a miss-set is a deviation from the otherwise used $(X \setminus B)^+$, but in [5], [6] the corresponding hit-and-miss hyperspace topologies also were defined in this manner.) By τ_l we denote the topology for Cl(X),

generated by the subbase of all G^- , $G \in \tau$. Now consider $\emptyset \neq \alpha \subseteq \mathfrak{P}(X)$; by τ_{α} we denote the topology for Cl(X) which is generated from the subbase of all B^+ , $B \in \alpha$ and G^- , $G \in \tau$. Of course, for every possible α we have $\tau_l \subseteq \tau_{\alpha}$; for $\alpha = Cl(X)$ we get the Vietoris topology and for $\alpha = K(X)$ we get the Fell topology for Cl(X). If $\alpha = \Delta \subseteq Cl(X)$, τ_{α} is called Δ -topology by Beer and Tamaki [2].

 Δ -topologies are now studied by several authors (see [2], [3] and the papers quoted in these papers). Δ -topologies were first considered in a paper [6] of the second author. In this paper and in the preceding paper [5] separation axioms, especially Hausdorffness and regularity, for general hit-and-miss topologies and for Δ -topologies were studied. The aim of the present paper is to look for a special class of hit-and-miss topologies τ_{α} , including Δ -topologies, when $(Cl(X), \tau_{\alpha})$ is compact. At first we will extend the notions of the hit-and miss-sets in order to state some quite general lemmas.

By $\Phi(X)$ and $\Phi_0(X)$ we denote the set of all filters and ultrafilters, respectively, on a set X (a filter is not allowed to contain the empty set \emptyset); the symbol $\Phi(\varphi)$ (resp. $\Phi_0(\varphi)$) means the set of all filters (resp. ultrafilters) which contain a given filter φ ; \dot{x} is the filter generated by a singleton $\{x\}, x \in X$. The symbol q_{τ} denotes the convergence structure induced by a topology τ , i.e. $q_{\tau} := \{(\varphi, x) \in \Phi(X) \times X | \varphi \supseteq \dot{x} \cap \tau\}$, so q_{τ} is a relation between filters and points of a set X.

DEFINITION 1. For a set X assume $\mathfrak{A} \subseteq \mathfrak{P}(X)$, $M \subseteq X$. Then we call

$$M^{-\mathfrak{A}} := \{ A \in \mathfrak{A} | A \cap M \neq \emptyset \}$$

the M-hit-set w.r.t. a and

$$M^{+_{\mathfrak{A}}} := \{ A \in \mathfrak{A} | A \cap M = \emptyset \} (= \mathfrak{A} \setminus M^{-_{\mathfrak{A}}} =: (M^{-_{\mathfrak{A}}})^{c})$$

the M-miss-set w.r.t. a.

Obviously we get the usual notions mentioned above with $\alpha = Cl(X)$.

If X is a set, τ , $\mathfrak A$ are subsets of $\mathfrak P(X)$, then we call $\mathfrak A$ weak complementary w.r.t τ , iff for every collection $\{G_i|i\in I\}\subseteq \tau$ and every subset $\emptyset\neq R\subseteq X\setminus\bigcup_{i\in I}G_i$ there exists an element A of $\mathfrak A$ with $A\subseteq X\setminus\bigcup_{i\in I}G_i$ and $A\cap R\neq\emptyset$. (Equivalently, one may write $\bigcup\{A\mid A\in\mathfrak P(X\setminus\bigcup_{i\in I}G_i)\cap\mathfrak A\}=X\setminus\bigcup_{i\in I}G_i$ for this.)

Now, we can state a quite set-theoretical, not even surprising, but fairly useful lemma:

LEMMA 2. Let X be a set, τ , $\mathfrak{A} \subseteq \mathfrak{P}(X)$ and $K \subseteq X$. Then holds

$$\bigcup_{i\in I}G_i\supseteq K\implies \bigcup_{i\in I}G_i^{-\alpha}\supseteq K^{-\alpha}$$

for every collection G_i , $i \in I$, $G_i \in \tau$.

If α is weak complementary w.r.t. τ , then for every collection G_i , $i \in$ $I, G_i \in \tau$ the implication

$$\bigcup_{i \in I} G_i \supseteq K \iff \bigcup_{i \in I} G_i^{-\alpha} \supseteq K^{-\alpha}$$

holds, too.

Proof. Let
$$\bigcup_{i \in I} G_i \supseteq K$$
. $A \in K^{-\infty} \Rightarrow A \cap K \neq \emptyset \Rightarrow \emptyset \neq A \cap \bigcup_{i \in I} G_i \Rightarrow \exists i_0 \in I : A \cap G_{i_0} \neq \emptyset \Rightarrow A \in G_{i_0}^{-\infty} \Rightarrow A \in \bigcup_{i \in I} G_i^{-\infty}$.

Conversely, let \mathfrak{A} be weak complementary w.r.t. τ and $\bigcup_{i=1}^{\infty} G_i^{-\mathfrak{A}} \supseteq K^{-\mathfrak{A}}$.

Assume
$$\bigcup_{i \in I} G_i \not\supseteq K$$
. Then $X \setminus \bigcup_{i \in I} G_i \supseteq K \setminus \bigcup_{i \in I} G_i \neq \emptyset$ holds, so there is an $A \in \mathfrak{A}, A \subseteq X \setminus \bigcup_{i \in I} G_i$ with $A \cap K \setminus \bigcup_{i \in I} G_i \neq \emptyset$. Thus $A \in K^{-\alpha}$, implying

$$A \in \mathfrak{A}, A \subseteq X \setminus \bigcup_{i \in I} G_i \text{ with } A \cap K \setminus \bigcup_{i \in I} G_i \neq \emptyset. \text{ Thus } A \in K^{-\alpha}, \text{ implying}$$

$$A \in \bigcup_{i \in I} G_i^{-\infty}$$
. This yields $\exists i_0 \in I : A \cap G_{i_0} \neq \emptyset$ in contradiction to the construction of A .

COROLLARY 3. Let X be a set, τ , $\mathfrak{A} \subseteq \mathfrak{P}(X)$ and $K \subseteq X$. Then holds

$$(1) \qquad \bigcup_{i \in I} G_i \supseteq K \iff \bigcup_{i \in I} G_i^{-\alpha} \supseteq K^{-\alpha}$$

for every collection G_i , $i \in I$, $G_i \in \tau$ if and only if \mathfrak{A} is weak complementary w.r.t. τ .

Proof. We only have to show, that \mathfrak{A} is weak complementary w.r.t. τ , if (1) holds. Assume, α is not weak complementary w.r.t. τ . Then there must be a collection $\{G_i|i\in I\}\subseteq \tau$, such that

$$\bigcup \left\{ A | A \in \mathfrak{P}\left(X \setminus \bigcup_{i \in I} G_i\right) \cap \mathfrak{A} \right\} \not\supseteq X \setminus \bigcup_{i \in I} G_i.$$

Now, we chose

$$K := \left(X \setminus \bigcup_{i \in I} G_i \right) \setminus \bigcup \left\{ A | A \in \mathfrak{P} \left(X \setminus \bigcup_{i \in I} G_i \right) \cap \mathfrak{A} \right\} \neq \emptyset.$$

Then no element of \mathfrak{A} , which meets K, can be contained in $X\setminus\bigcup_{i\in I}G_i$, i.e. every element of $K^{-\mathfrak{A}}$ meets $\bigcup_{i\in I}G_i$, too. So, it must meet a $G_{i_0},i_0\in I$ and consequently it is contained in $\bigcup_{i\in I}G_i^{-\mathfrak{A}}$. But, by construction, the collection $\{G_i|i\in I\}$ doesn't cover K, so (1) would fail.

Obviously, if for every collection $\{G_i|i\in I\}\subseteq \tau$ the complement $X\setminus\bigcup_{i\in I}G_i$ itself belongs to \mathfrak{A} , or if all singletons $\{x\}, x\in X$ are elements of \mathfrak{A} , then \mathfrak{A} is weak complementary w.r.t. τ . So, if τ is a topology on X, Cl(X) and K(X) are weak complementary w.r.t. τ .

COROLLARY 4. Let (X, τ) be a topological space, $K \subseteq X$ and $\forall i \in I$: $G_i \in \tau$. Then holds

$$\bigcup_{i\in I}G_i\supseteq K\iff \bigcup_{i\in I}G_i^-\supseteq K^-$$

DEFINITION 5. Let (X, τ) be a topological space. A subset $A \subseteq X$ is called weak relative complete in X, iff

$$\forall \varphi \in \Phi(A) \cap q_{\tau}^{-1}(X) : \Phi(\varphi) \cap q_{\tau}^{-1}(A) \neq \emptyset$$
,

i.e. every filter φ on A, which converges in X, has a refinement, converging in A.

PROPOSITION 6. Let (X, τ) be a topological space and $A \subseteq X$. Then holds:

- (a) A is weak relative complete in X, iff $\Phi_0(A) \cap q_{\tau}^{-1}(X) = \Phi_0(A) \cap q_{\tau}^{-1}(A)$, i.e. every ultrafilter on A, which converges in X, converges in A, too.
- (b) If A is closed in X, then A is weak relative complete in X.
- (c) If A is compact, then A is weak relative complete in X.

- (d) If (X, τ) is compact and A is weak relative complete in X, then A is compact, too.
- (e) If (X, τ) is Hausdorff, then every weak relative complete subset $A \subseteq X$ is closed in (X, τ) .
- (f) A is compact iff A is weak relative complete and relative compact.
- (g) Weak relative completeness is transitive, i.e. for all $A \subseteq B \subseteq X$ with B weak relative complete in (X, τ) and A weak relative complete in $(B, \tau_{|B})$, the subset A is weak relative complete in (X, τ) , too.

Proof:

- (a): If A is weak relative complete in X, the assertion about the ultrafilters on A follows immediately from the fact, that an ultrafilter has no proper refinement. Conversely, if a filter φ on A is given, which converges in X, then every refining ultrafilter $\psi \supseteq \varphi$ converges in X, too. Now, by $\Phi_0(A) \cap q_{\tau}^{-1}(X) = \Phi_0(A) \cap q_{\tau}^{-1}(A)$, ψ converges in A and is a refinement of φ . So, A is weak relative complete in X.
- (b): If A is closed in X, then every point of X, to which a filter on A may converge, belongs to A.
- (c): If A is compact, then every ultrafilter on A converges in A and the weak relative completeness of A in X follows from (a).
- (d): X compact $\Rightarrow \Phi_0(X) \cap q_{\tau}^{-1}(X) = \Phi_0(X) \Rightarrow \Phi_0(A) \cap q_{\tau}^{-1}(X) = \Phi_0(A)$ and by the weak relative compactness of A with (a) we get $\Phi_0(A) \cap q_{\tau}^{-1}(A) = \Phi_0(A)$, i.e. A is compact.
- (e): If A is weak relative complete in (X, τ) and there is a filter $\varphi \in \Phi(A)$, converging to a point $x \in X$. Then there must exist a refining filter $\psi \in \Phi(\varphi)$ which converges to a point $a \in A$. But this filter converges to x, too, because of it's subfilter φ , so by Hausdorffness $x = a \in A$ follows. So, A is closed in (X, τ) .
- (f): A compact subset A is clearly relative compact, and it is weak relative complete by (c). If A is relative compact¹, then every ultrafilter on A converges in X and so it converges in A by (a) if A is in weak relative complete in addition.

¹ Note, that we call a subset A of a topological space (X, τ) to be *relative compact in* X, iff all ultrafilters on A converge in X. This doesn't imply the compactness of the closure of A, in distinction to another practices to use the notion "relative compact". For more explanation see [1], [7]

(g): Follows immediately from (a), because an ultrafilter on A is an ultrafilter on B, too. So, if it converges in X, it must converge in B and so in A, too, because of the weak relative completeness, successively. \Box

Obviously, we can define the well-known hyper-topology τ_l not only for the space of the closed subsets, but for any subset $\mathfrak A$ of $\mathfrak P(X)$: denote by $\tau_{l,\mathfrak A}$ the topology for $\mathfrak A$, which is generated by the subbase consisting of all $G^{-\mathfrak A}$, $G \in \tau$. (This means, we require the images of the open sets of the base space under the mapping $f^{-\mathfrak A} : \mathfrak P(X) \to \mathfrak P(\mathfrak A)$ to be open in the hyperspace.) In the same manner we can extend the definition of $f^{-\mathfrak A}$ for any $f^{-\mathfrak A} \subseteq \mathfrak P(X)$. (This means, we require the images of the members of $f^{-\mathfrak A}$ under the $f^{-\mathfrak A}$ -mapping to be closed in the constructed hyperspace. So, the study of hit-and-miss-hyperspaces is essentially the study of the $f^{-\mathfrak A}$ -mapping.)

LEMMA 7. Let (X, τ) be a topological space, $\alpha \subseteq \mathfrak{P}(X)$ and a collection $\mathfrak{P}(X)$ which is weak complementary w.r.t. τ . If (X, τ) is not compact, then $\mathfrak{P}_0 := \mathfrak{P}(X)$ is not compact in τ_l and consequently not in τ_{α} , too.

Proof. If α is weak complementary w.r.t. τ , then α_0 is, too. So, lemma 3 is applicable.

Because X is not compact, there is an open cover $(G_i)_{i \in I}$ of X, such that no finite subfamily covers X. Applying Lemma 2 with K = X and consequently $K^{-\alpha_0} = \mathfrak{A}_0$ we find, that $(G_i^{-\alpha_0})_{i \in I}$ is an open cover of \mathfrak{A}_0 . For any subfamily of $(G_i^{-\alpha_0})_{i \in I}$ which covers \mathfrak{A}_0 , the corresponding subfamily of $(G_i)_{i \in I}$ covers X by lemma 2. So, there exists no finite subcover of \mathfrak{A}_0 in $(G_i^{-\alpha_0})_{i \in I}$.

Now, we can state the main result.

THEOREM 8. If (X, τ) is a topological space, then let $\alpha \subseteq \mathfrak{P}(X)$ consist of weakly relative complete subsets of X. Then holds for any \mathfrak{A} with $Cl(X) \subseteq \mathfrak{A} \subseteq \mathfrak{P}(X)$: $(\mathfrak{A}_0, \tau_{\alpha})$ is compact $\iff (X, \tau)$ is compact.

Proof: According to lemma 7 we only must show that $(\mathfrak{A}_0, \tau_\alpha)$ is compact, if (X, τ) is compact. So, assuming (X, τ) to be compact, by proposition 6 every weakly relative complete subset of X is compact, too, and we have $\alpha \subseteq K(X)$. Now we will use Alexander's lemma: let \underline{U} be a cover of \mathfrak{A}_0 , consisting of subbase elements $K_i^{+\mathfrak{A}_0}$, $G_j^{-\mathfrak{A}_0}$ with K_i compact and G_j open.

$$A := X \setminus (\bigcup \{G | G^{-\alpha_0} \in \underline{U}\})$$
 is closed.

By construction, $A \notin G^{-\alpha_0}$ for any $G^{-\alpha_0} \in \underline{U}$, so for $A \neq \emptyset$ there must exist some $K_0^{+\alpha_0} \in \underline{U}$ with $A \in K_0^{+\alpha_0}$, yielding that $K_0 \subseteq \bigcup \{G | G^{-\alpha_0} \in \underline{U}\};$ K_0 compact $\Rightarrow \exists G_1, ..., G_n \in \underline{U}$ with $K_0 \subseteq \bigcup_{k=1}^n G_k$, but then $\{K_0^{+\alpha_0}\} \cup \{G | G^{-\alpha_0}\}$

$$\{G_1^{-\alpha_0}, ..., G_n^{-\alpha_0}\}$$
 is a cover of α_0 .

If $A = \emptyset$, then $\bigcup \{G_i | G_i^{-\alpha_0} \in \underline{U}\} = X$, so from the compactness of X the existence of some $G_1^{-\alpha_0}, ..., G_n^{-\alpha_0} \in \underline{U}$ with $X = \bigcup_{k=1}^n G_k$ follows. By lemma

2 then
$$\bigcup_{k=1}^n G_k^{-\alpha_0} = \alpha_0$$
 holds. \square

Remark: Obviously, weak relative compactness is not the "weakest" condition, which one may require for the members of α in order to get compactness for $(\mathfrak{A}_0, \tau_\alpha)$ in this way. The only thing, we have to ensure, is that all members of α are compact, if X is compact. But, weak relative completeness ist a quite "weak" propertie as well, and it occurs in a natural manner by regarding some generalizations of uniform structures. It seems to be a sometimes useful common generalization of compactness, closedness and, in a (generalized) uniform setting, completeness.

COROLLARY 9. Theorem 8 holds for each Δ -topology; especially it holds for the Vietoris topology, where the theorem was proved by Michael [4]. It also holds for the Fell topology $\tau_F = \tau_{\alpha}$, where $\alpha := \{K \subseteq X | \emptyset \neq K \text{ compact and closed}\} \subseteq Cl(X)$.

COROLLARY 10. Theorem 8 holds for the Fell topology $\tau_F = \tau_{\alpha}$, where $\alpha := K(X)$ and $\emptyset \in K(X)$.

REFERENCES

- [1] Bartsch R., Dencker P., Poppe H., Ascoli-Arzelà-Theory based on continuous convergence in an (almost) non-Hausdorff setting; in "Categorical Topology", Dordrecht, 1996.
- [2] Beer G., Tamaki R., *On hit-and-miss hyperspace topologies*, Commentat. Math. Univ. Carol., **34** (1993), 717-728.
- [3] Beer G., Tamaki R., The infimal value functional and the uniformization of hit-and-miss hyperspace topologies, Proc. Am. Math. Soc., 122 (1994), 601-612.
- [4] Michael E., ; Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71 (1951), 152-182.

- [5] Poppe H., Eine Bemerkung über Trennungsaxiome in Räumen von abgeschlossenen Teilmengen topologischer Räume, Arch. Math., XVI (1965), 197-199.
- [6] Poppe H., Einige Bemerkungen über den Raum der abgeschlossenen Mengen, Fund. Math., LIX (1966), 159-169.
- [7] Poppe H., Compactness in General Function Spaces, Berlin, 1974.

Pervenuto il 12 Giugno 2001

René Bartsch Universität Rostock Fachbereich Informatik Albert-Einstein-Str. 21 18059 ROSTOCK - Germany e-mail: rene.bartsch@informatik.uni-rostock.de

Harry Poppe Universität Rostock Fachbereich Mathematik Universitätsplatz 1 18055 ROSTOCK - Germany e-mail: harry.poppe@mathematik.uni-rostock.de